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Abstract. This paper investigates a curious case of informed initial-
ization technique to solve difficult multi-objective optimization (MOP)
problems. The initial population was injected with non-exact (i.e.
approximated) nadir objective vectors, which are the boundary solu-
tions of a Pareto optimal front (PF). The algorithm then successively
improves those boundary solutions and utilizes them to generate non-
dominated solutions targeted to the vicinity of the PF along the way.
The proposed technique was ported to a standard Evolutionary Multi-
objective Optimization (EMO) algorithm and tested on a wide variety
of benchmark MOP problems. The experimental results suggest that the
proposed approach is very helpful in achieving extremely fast conver-
gence, especially if an experimenter’s goal is to find a set of well distrib-
uted trade-off solutions within a fix-budgeted solution evaluations (SEs).
The proposed approach also ensures a more focused exploration of the
underlying search space.

1 Introduction

Since the past two decades, the algorithmic techniques to solve multi-objective
optimization problems (MOPs) have been developed mainly by the two commu-
nities independently. Centrally, by the classical numerical optimization practi-
tioners and also by the Evolutionary Multi-objective Optimization (EMO) com-
munity. However, in many occasions, they both address the same problem in
two completely different perspectives. For example, a canonical algorithm like
Normal Boundary Intersection (NBI) [1] assumes that the bound (i.e. affine sub-
space of the lowest dimension that contains convex hull of individual minima or
CHIM+) of the Pareto-optimal front (PF) is already known, on the other hand,
such assumption is not necessary in many standard EMO algorithms [2].

However, bounding/bracketing of the search space is the first step in many
classical numerical optimization algorithms [3]. As EMO algorithms are stochas-
tic global search algorithms, they do not require such a measure. Moreover, the
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concept of bound might not be understood as it has been done in the single
function optimization problems. In MOPs, bounds can be considered as the set
of boundary solutions beyond which the objective function is undefined (or in
constrained problems, infeasible). However, if those bounding solutions are avail-
able before any EMO run, they will be very useful in finding the complete PF
in a more efficient way. This paper will try to explore this possibility.

Interestingly, we can find some examples in the recent EMO literature where
such bracketing techniques have been used. For example, in [4] the algorithm
simultaneously searches for the boundary solutions and inserts them into the
population on different stages. In another study [5], a high performance single
objective search algorithm is used to seed the initial population with solutions
to a scalarized version of the problem, and reported to be useful with standard
EMO algorithms. From all these examples, there are some interesting questions
that we think are not answered yet:

– Is it computationally feasible1 to find the boundary solutions first and later
use them in an EMO algorithm?

– Instead of only depending on random local search operations [4,5,7], can these
boundary solutions be explicitly utilized in a more intuitive and deterministic
way?

– How many bounding (or a minimum number of bounding) solutions are suffi-
cient enough to be utilized efficiently?

In this paper, we would like to address these questions. The paper is orga-
nized as follows: in Sect. 2 we will review some basic definitions related to MOPs,
then in Sect. 3 we will discuss two specific motivations for this study. After that
we will describe our approach in Sect. 4. The proposed algorithm can explicitly
construct (i.e. explores) the rest of the Pareto optimal solutions within (or, the
vicinity of) the approximate bounding solutions through an intuitive heuristic.
Moreover, our approach also improves the approximations using a careful update
mechanism to ensure that they can reach to the true PF bounding points. By
this way, we can facilitate a more informed exploration and save a huge num-
ber of solution evaluations. Our scheme is then applied to a standard EMO
algorithms (i.e. NSGA-II [2]). Then we will discuss our experiment results on
different benchmark MOP problem sets in Sect. 5 and then we conclude the
paper in Sect. 6.

2 Preliminaries

We consider multi-objective optimization problems (MOPs) involving m con-
flicting objectives (fi : S ⊂ R

n → F ⊂ R
m) as functions of decision vector

1 PF bounds are no easier to find than any other solution in the PF, this has been
proved numerous times [6].
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x ∈ S. We also assume that the readers are already familiar with the basic ter-
minologies2 concerning an MOP. Specific to this paper, we are more interested in
the boundary of the set F , the boundary can also be defined in terms of convex
hull of finite point set [1]:

Definition 1 (Convex Hull of Inidividual Minima (CHIM)). Given an
ideal objective vector z∗ = [f∗

1 , f∗
2 , . . . , f∗

m]T , let us assume Φ be an m×m matrix3

whose i-th column is f∗
i . Then the set of points in R

m which are convex combina-
tions of f∗

i , i.e. Φβ : β ∈ R
m,

∑n
i=1 βi = 1, βi ≥ 0, are referred as the CHIM.

From the above definition, a PF can be understood in terms of so-called
CHIM+:

Definition 2 (CHIM+). Let CHIM∞ be the affine subspace of the lowest
dimension that contains the CHIM, i.e. the set {Φβ : β ∈ R

m ,
∑m

i=1 βi = 1}.
Moreover, denote δF as the boundary of the set F . Then CHIM+ is defined
as the convex hull of the points in the set F ∩ CHIM∞. More informally, if
we extend (or withdraw) the boundary of the CHIM simplex to touch δF ; the
“extension” of CHIM thus obtained is defined as CHIM+.

Therefore, the Pareto-optimal front PF can also be defined as a set of inter-
section points found from the normals emanating from the CHIM+ (towards
the ideal objective vector z∗) on to δF . The bounding points of the PF is the
end point solutions of CHIM+, they can be approximated using either z∗ or the
nadir objective vector znad.

As we have discussed before, the bounding points to the PF is a topic of spe-
cial interest in the classical numerical optimization community since, in many
cases, these points are the first step to model the PF. And therefore, it is the
starting point of many non-stochastic MOP solvers [1,10,11]. Whereas in the
EMO community, the bounding points are generally overlooked; just because:
(i) bounding points do not represent the trade-off – being minimum at all objec-
tives except one, (ii) they are not of much interest in Decision Maker’s (DM’s)
perspective, (iii) since all EMO algorithms employ a population based parallel
search, the bounds can be found out along with an EA run. As a result, finding
boundary solutions4 is taken as granted. Or such points can be found with a
careful change in the original algorithm [6].

In this paper, we will see how the performance of an EMO can be dras-
tically improved if we first approximate such bounding solutions, inject them
into the initial population and thereafter take necessary measures to improve
the approximations to the true PF bounds. To approximate them, we will use

2 Weak/Strong Pareto dominance, non-dominated (Pareto) set (PS), local/global
Pareto-optimal front (PF), critical point and ideal/Nadir objective vector etc. They
are also discussed in [8].

3 Also, known as the pay-off matrix [9].
4 The terms “bounding solutions” and “boundary solutions” will be used interchange-

ably throughout the paper.
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classical optimization methods like Interior point method (IPM) [12] and gen-
eralized pattern-search (GPS) [13] approach by optimizing m single objective
achievement-scalarizing functions [14]. Given the function evaluations spent to
find those bounding solutions, our approach demonstrates that it can still save a
lot of computational effort compared to that of a standard EMO algorithms. Due
to the space constraints, other relevant discussions and the results are included
in the supplementary document [8] accompanied with this paper.

3 Motivations

The main motivating guide of this study stems from two aspects: (i) we wanted
to take the advantages of the determinism in the classical numerical optimization
methods and, (ii) we wanted to guide the search trajectory in a more non-skewed
way so that all the trade-off regions will be explored with a similar pace.

3.1 Inspirations from the Classical Methods

In the classical numerical optimization discipline, the first thing we learn is the
concept of bounding (or bracketing) of the minima (or maxima) [3]. Otherwise,
the optimization algorithms will spend a lot of time figuring out a suitable place
to start the actual search process.

The first example is the famous Normal Boundary Intersection (NBI) algo-
rithm [1], where the primary theory is developed based on the assumption that
we already have the end-point solutions of the CHIM+. Another example is
presented in [10], where the algorithm first finds the boundary solutions, then
discretizes the PF using triangulation algorithm and then enumerates the entire
PF. In [11], the idea is to find the znad (although the points are not referred
as “nadir” objective vector in the paper), then construct the CHIM+ from it.
After that, the algorithms divides the space into smaller parts to find the rest
of the solutions on the true PF. The authors mentioned that the approach is
not suitable for more than 2 objectives. A more detailed survey on such non-
population/stochastic MOP approaches to “bound first, then optimize” can be
found in [15].

Unfortunately, in most cases the algorithms presented are not simple and
easy to implement. Moreover, many examples of such strategies are specialized
to a particular problem domain. According to [15], such approaches are termed
as the first order approximation algorithms. In that sense, our approach can be
considered as an example of such category, however simpler and more intuitive
than the existing approaches. Moreover, our method is applicable to wide range
of MOPs.

3.2 Search Trajectory Bias

Most of the standard EMO algorithms are elitist by design. They are also “oppor-
tunistic” in a sense that the population always try to converge to a particular
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portion of the PF which seems to be easier to solve at a particular moment.
Therefore, they tend to generate more solutions on a certain portion of the
objective space which is easier to explore. For example, we can see such bias
when we try to solve the ZDT4 problem using NSGA-II. In this case, the first
objective is easier to minimize than the second one. In ZDT4, reaching the actual
PF is difficult because of the local fronts, however finding the weakly dominated
solutions along the f2 axis is comparatively easy. This kind of non-symmetric
search behaviour, is what we think, impedes the optimization procedure – espe-
cially, if the goal is to find well-distributed solutions within a budgeted function
evaluation. In addition, such bias might form in multiple spaces if the number
of objective increases. Moreover, this can also lead to a stagnation on a locally
optimal front.

4 The Algorithm Description

The algorithm works in two phases. The first phase approximates the boundary
of the CHIM+ using a fixed budget. In the next phase, an EMO algorithm
will explore the entire PF. And most importantly, during the same time, the
algorithm needs to successively update (or improve) the bounds, given the fact
that the bounds found in the first phase might not be exact. Our approach nicely
fits into a standard elitist EMO algorithm like NSGA-II [2].

4.1 Approximating the CHIM+ Bounds

In m-dimensional objective space if the true PF is a surface, then it can have
more than m number of CHIM+ end points. For example, in the three-objective
DTLZ7 problem [16], CHIM+ has eight end points. However, we do not want
to trace all the solutions that encompasses the entire PF boundary (as it has
been done in [10]), we are only interested in the CHIM+ end-points. To find the
bounds, we keep these criteria in mind:

1. Finding the exact PF bound is non-trivial, so the goal is to get an approx-
imation that is “good enough”. Which is also difficult because, to measure
the closeness, we need to know the true PF.

2. Use the “best possible” effort to approximate the PF bounds, by spending a
fixed number (as small as possible) of solution evaluations5 (SEs).

3. Use a deterministic classical numerical single-objective optimization algo-
rithm.

4. Try to approximate at most m bounding solutions, but not more than that:
running the single objective optimizer for at most m times.

For a given EA run, let’s assume we start with Np individuals for Ngen genera-
tions. Therefore, the total number of function evaluations will be Te = NpNgen.

5 Instead of Function Evaluation we refer it as Solution Evaluation, because a fit-
ness function might be evaluated from a series of multiple mathematical function
evaluations.
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Algorithm 1. Approximate All CHIM+ Bounds
1: m ← no. of objectives
2: Np ← population size
3: Ngen ← maximum generation
4: Tb ← 1

4
NpNgen

5: Z∗
b ← ∅, an empty solution set

6: for i from 1 to m do
7: fi ← i-th objective function
8: x∗

i ← random initial vector
9: repeat

10: x∗
i ← minimize fi

11: until Tb
2m

solution evaluation reached

12: zref ← [f1(x
∗
i ), f2(x

∗
i ), . . . , fm(x∗

i )]
T

13: faasf ← construct AASF according to Eq. 1
14: repeat
15: x∗

i ← minimize faasf w.r.t. zref

16: until Tb
2m

solution evaluation reached
17: Z∗

b ← {Z∗
b ∪ x∗

i }
18: end for
19: return Z∗

b

For the fixed budget, we will allocate Tb = Te/4 function evaluations for the
bound search and Tea = 3Te/4 for the actual EA run. To approximate the
bound, we will separately optimize m objective functions, we will spend Tb/m
function evaluation for each bounding points.

The actual CHIM+ bound computation algorithm was conducted in two
steps – (i) given a particular objective function fi, first we minimize it by spend-
ing Tb/2m number of function evaluations and assume a solution x∗

i is found.
Moreover, assume zref = f(x∗

i ). This step is done as a “bootstrap” that will help
us to reach close to the f∗

i . (ii) then we construct an Augmented Achievement
Scalarizing Function (AASF) [14] by taking zref as a reference point:

faasf = ρ

m∑

j=1

wj(fj(x) − zrefj ) + max
j∈{1,2,...,m}

wj(fj(x) − zrefj ) (1)

and solve it again for Tb

2m iterations. Here, we set wi = 0.9, wj �=i = 1
10(m−1) . We

set ρ = 0.0001, the value of ρ should be kept small enough so that we can avoid
the weakly dominated solutions. For the single objective solver, we use classical
methods like Interior Point Method (IPM) [12] or Generalized Pattern Search
(GPS) [13] etc.

A basic listing for this routine is presented in Algorithm 1 and the concept is
illustrated in the Fig. 1. It should be noted that, this algorithm does not always
find the all the unique bounds correctly, especially when the problem is hard, or
when the PF is composed of multiple disconnected fronts.
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Fig. 1. The illustration of Algorithm 1 while finding a bounding solution that minimizes
f2. The algorithm spends Tb/2m function evaluations to find zref and another Tb/2m
function evaluations to approximate one of the CHIM+ bounds. The figure also shows
that the discovered solution x∗ might not be the exact bounding point.

4.2 The Exploration Step

The basic exploration is conducted as follows: after estimating the CHIM+

bounds, we will include the set Z∗
b into the initial population and then the EA

execution will start. On each generation, we will select 25% of the best (i.e. the
first front) individuals from the current population, then we pick one arbitrary
decision vector xs (we call it source vector) from the selected 25% solutions. Next
we pick one random solution from Z∗

b as a target vector xt. Here, the decision
vector xt is the promising solution that we want to get close to. Given xs and
xt ∈ Z∗

b , the variation operation is achieved using a simple linear translation –

xc = xs + U
[(

3d

4
,
5d

4

)]

◦
[

xs − xt

||xs − xt||
]

(2)

Here, U[(l, u)] is a uniform random vector where each element is within the range
[l, u], d = ||xs −xt|| and ◦ is the Hadamard product. xc is the generated solution.
Basically, we are trying to generate a solution that is within an n-dimensional
sphere with radius d/4 centered at xt.

In an ideal case, if the set Z∗
b contains the true CHIM+ bounds, then the

later operation will ensure a very fast (almost immediate) convergence. However
this does not address the issue of so-called Search Trajectory Bias, to alleviate
such a degeneracy, we will include more decision vectors in the set Z∗

b . For this
treatment, we will also include solutions with the maximal crowding distances
from the current best front. If we compute the crowding distances as have been
done in the NSGA-II algorithm, the extreme solutions will have the crowding
distance of ∞ and the solutions that are rendered isolated within the current
best front will have the maximal values. The gaps in the PF are enclosed by
such isolated solutions.

Let us assume the solutions that reside on the edge of the gaps are denoted as
Eg and the solutions with ∞ crowding distances are denoted as E∞. Obviously,
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if we could generate more points to the vicinity of Eg, the search trajectory
bias could be repaired long before they become more severe. Therefore, we also
include Eg in Z∗

b and we denote this set as V, i.e. V = {Z∗
b ∪ Eg}. To do this,

we will pick m solutions with the maximal crowding distances (excluding the
solutions in E∞) from the current population, as Eg. Moreover, this inclusion
needs to be done in every generation, because we do not know if the current
front is the PF or not. Furthermore, Eg is never identical across the generations.

Fig. 2. The exploration step, i.e. the illustration of lines 9–12 in Algorithm 3. The right
axes are the variable space and the left axes are the corresponding objective space. The
point xc is the child (black circle) and xs is the source (white circle) decision vectors.
The vectors xt are the target points (grey circles). The operation will arbitrarily choose
one of the directions denoted by L1, L2 or L3. If xc violates the variable bound then
it is reverted back to the corresponding target point xt.

Now, instead of taking the target decision vectors xt from Z∗
b , we will consider

them from V. We call all the solutions in V as “pivot points”. Along with the
search trajectory bias corrections, we also consider the case when Z∗

b is not the

Fig. 3. Different configurations and the relative positioning of the solutions in V. The
first two cases ((a), (b)) are ideal, since the target solutions can be retained in the set
V by a simple non-dominated sorting. For the third case (c), a special swapping step
(line 7–9, Algorithm 2) is required to maintain a solution set to encourage diversity.



598 A.K.M.K. Ahsan Talukder et al.

true CHIM+ bounds (in fact, this is the most likely case). Which follows that we
need to improve the bounds in Z∗

b during the EA generations. This procedure
is explained in the next section.

4.3 Successive Bound Correction

The procedure described in the previous section only considers an ideal case,
where the positions of Z∗

b , Eg and E∞ never coincide with any other. However
during the evolutionary runs, different configurations may arise –

Algorithm 2. Update Pivot Points
Require: approx. CHIM+ bounds Z∗

b from Algorithm 1 or the set Z∗
b found from the

previous update.
1: E∞ ← boundary solutions from the current front
2: V ← {Z∗

b ∪ E∞}
3: apply non-dominated sorting on V
4: rank V: V → {F1,F2, . . . ,Fn}
5: take the best front in V ′: V ′ ← F1

6: for all points xi in (V − V ′) do
7: if xi weakly dominates any xj ∈ V ′ then
8: replace xj by xi

9: end if
10: end for
11: update Z∗

b : Z∗
b ← V ′

12: Eg ← find m solutions with maximal crowding distances.
13: V ← {V ′ ∪ Eg}
14: return V

– Case 1 (Ideal Case): where Z∗
b is close to (or coincident with) the true CHIM+

bounds. The current front is far from the true PF, therefore Eg and E∞ do not
coincide with Z∗

b . Refer to the Fig. 3a.
– Case 2 (Ideal Case): where Z∗

b is weakly dominated by the corresponding
solutions in E∞ (Fig. 3b). In this case, we need to discard the solution x1 and
keep x4 in V.

– Case 3 (Degenerate Case): where Z∗
b does not coincide with the true PF bound

(or both non-dominated), and one of the solutions in E∞ weakly dominates
the corresponding solution in Z∗

b (Fig. 3c). In this case, we need to discard the
solution x4 and keep x1 in V. Because the solution x1 has the higher chance
of extending the current/future front, so that it does not loose the diversity
in terms of the objective function trade-off.

The above three configurations indicates that we also need to include E∞
into the pivot set V. In order to address the case 1 and 2, we first merge the
sets Z∗

b ∪ E∞ into V and apply non-dominated sorting. Then we will take out
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the non-dominated solutions V ′ from V, i.e. (V − V ′). After that, we will check
if any point xi ∈ (V − V ′) weakly dominates a point xj ∈ V ′. If yes, we will
replace xj by xi. This step will handle the case 3 as presented in the Fig. 3c.
The procedural description of this step is presented in the Algorithm 2.

If we run Algorithm 2 in the case 1 (Fig. 3a), the resultant pivot set will be
V = {x1,x2,x5,x6}. In case 2 (Fig. 3b), it will be V = {x2,x4,x5,x6} and in
the case 3 (Fig. 3c), the result will be V = {x1,x2,x5,x6}, etc. Also, |V ′| ≤ |V| is
trivially true. On the line 14 of Algorithm 2, it is always the case that |V| > m.
The integration into NSGA-II is straight-forward, which is discussed in the next
section.

4.4 Integrating into an Elitist EMO Algorithm: NSGA-II

The integration listing is presented in the Algorithm 3. The only difference with
NSGA-II is that we approximate the CHIM+ bounds and inject them into the
initial individual. Then we take 25% of arbitrary individuals and project them
on to the pivot solutions, and all these projected solutions will be merged into
the child population on every generation. On the same iteration, the successive
improvement on the bounds is done on line 7.

Moreover, upon generating the vector xc, if one of the variable values go
beyond the variable bounds (i.e. xj > xjH or xj < xjL), then we replace the
overshot with the corresponding target vector value yj , i.e. yj ∈ xt. Therefore,
if a certain vector xc can’t make a successful translation, then xc is reverted
back to the vicinity of xt. Thus, we assure a local best estimated translation of
the source vector xs. This process is done on the line 13 of the Algorithm3, also
explained in the Fig. 2. Again, if we look at the line 18, it may seem that the pivot
points V are inserted into the current parent population on every generation. If
the Z∗

b are true PF bounds, the line 18 will inject the same copies of solutions
for multiple times. This can easily be avoided by keeping a global pointers to
the solutions in V. Another interesting aspect of this approach: it is “pluggable”
– in a sense that this can be ported to any other elitist EMO algorithm.

5 Experiments and Comparisons

Before describing the main experimental results, in the following subsection we
are going to review a special comparison technique called Relative Speed-up Ratio
(RSR) that has been utilized in this study. We also see how the benchmark prob-
lems’ specifications are also modified in order to ensure a fair comparative analy-
sis. The benchmark problems are taken from the existing EMO literature [16–18].

5.1 Performance Measure: The Relative Speed-Up Ratio (RSR)

In this experiment, we are interested to see if our approach can offer a bet-
ter convergence speed while maintaining a good diversity in terms of objective
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trade-offs. For the spread and convergence measure, we have used the Hypervol-
ume (HV) metric using the procedure discussed in [19]. For the speed, we have
formulated a metric called Relative Speed-up Ratio (RSR), which also depends
on the HV metric of the current front in each generation.

We ran the Algorithm 3 to solve a particular problem P and then the same
problem was solved using the original NSGA-II. At each generation, the HV mea-
sure was recorded from both algorithms and compared side by side. To under-
stand the statistics, all the experiment data were collated from 31 independent
runs, therefore the HV metric is calculated as the mean of those 31 runs at each
generation.

Algorithm 3. NSGA-II with Bracketing
Require: construct Z∗

b using Algorithm 1
1: Np ← population size |Pt|
2: Ngen ← maximum generation
3: initial child population: Q1 ← ∅
4: t ← 1
5: while t ≤ Ngen do

6: P ′
t ← select uniquely random

Np

4
solutions from Pt

7: Vt ← construct pivot set V using Algorithm 2
8: St ← ∅
9: for each solution xs ∈ P ′

t do
10: xτ ← pick an arbitrary point from Vt

11: d ← ||xτ − xs||
12: xc ← xs + U

[(
3d
4
, 5d

4

)] ◦ ( 1
d
(xs − xτ ))

13: if ((xj > xjH ) ∨ (xj < xjL) | ∃xj ∈ xc) then
14: correct overshoot: xj ← yj | yj ∈ xτ

15: end if
16: St ← {St ∪ xc}
17: end for
18: include the bounds: Pt ← {Pt ∪ Z∗

b }
19: Rt ← {Pt ∪ Qt}
20: rank Rt into fronts: Rt → {F1,F2, . . . ,Fn}
21: Pt+1 ← ∅
22: i ← 1
23: while |Pt+1| + |Fi| ≤ Np do
24: assign crowding distances on the front Fi

25: Pt+1 ← {Pt ∪ Fi}
26: i ← i + 1
27: end while
28: sort Fi in descending order using �n

29: Pt+1 ← the first Np − |Pt+1| solutions from Fi

30: Qt+1 ← select, crossover and mutate Pt+1

31: Qt+1 ← Qt+1 ∪ St and randomly shuffle Qt+1

32: t ← t + 1
33: end while
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Given a pair of EMO algorithms A and B, that solve a particular problem
P , the RSR measure is computed as follows:

RSR(A,B) =
SEA|HVA≥rHVBmax

SEB |HVBmax

(3)

In the above equation, SEA and SEB denotes the total number of solution evalu-
ations (SE) for algorithms A and B, respectively. And the subscripted expression
after | denotes the limit when the SE values need to be recorded. HVBmax denotes
the maxmium mean-HV measure for the algorithm B (in the convergence plot);
and r is a value 0.0 < r ≤ 1.0. Hence, the above expression computes the ratio
of two quantities –

– The total number of SE of algorithm A to reach at-least a certain r-portion
of the maximum of the mean-hypervolumes of B and

– The total number of SE of algorithm B to reach its maximum of the mean-
hypervolumes.

Therefore, if the algorithm A has a slower convergence rate than that of B, then
RSR(A,B) > 0.0, otherwise it will be equal to 0.0. For all the experiments, we
have set the value of r within 0.8 ≤ r ≤ 0.9. All the benchmark test problems
used in this paper are well defined and their shape of the PF is also known.
Therefore, for a given reference objective vector z, an ideal HV (IHV) is also
computable analytically. For the RSR results (presented in Table 1), we have
used the IHV values instead of HVBmax . So, in all our experiments, the RSR
values are computed as:

RSRIHV(A,B) =
SEA|HVA≥rIHV

SEB |IHV
(4)

5.2 Experiments with the Benchmark Problem Set

First we have tested the performance of Algorithm 3 on five 2-objective problems
[17], namely ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6, and we have set NSGA-II
results as the control groups. To maintain a fair comparison, we have compen-
sated the extra solution evaluations by the Algorithm 1 for the NSGA-II runs,
and compared NSGA-II and Algorithm 3 side by side. We are interested to see
which algorithm can reach to a desired IHV within less solution evaluations
(SE). For all the problems, we have seen our algorithm can demonstrate a very
steep convergence to the true PF, given that the extra SE from Algorithm 1 are
compensated for NSGA-II. The experiment with ZDT1 is illustrated in Fig. 4,
here we can see that the Algorithm 1 takes up to around 2K of solution eval-
uations. Given that, NSGA-II still lags behind with a multiple factors to reach
the desired PF, we have seen a similar effect on the problems ZDT2, ZDT4 and
ZDT6; except for ZDT3, for which we saw some fluctuations due to the discon-
nected nature of the true PF. We only presented two of our results in the Fig. 5,
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Table 1. The ideal HV (IHV), their corresponding reference points and
RSRIHV(NSGA-II, Algorithm 3) values.

Problem Ideal HV
(IHV)

Reference
Points (z)

SE at 90%-IHV
(NSGA-II)

SE at 90%-IHV
(Algorithm 3)

RSRIHV (NSGA-II,
Algorithm 3)

ZDT1 3.67 (2.0, 2.0) 3600 1689 2.13

ZDT2 3.34 (2.0, 2.0) 6000 1877 3.20

ZDT3 4.82 (2.0, 2.0) 3400 2340 1.45

ZDT4 3.67 (2.0, 2.0) 14500 5442 2.66

ZDT6 15.35 (4.0, 4.0) 20000 3036 6.59

DTLZ1 999.98 (10.0, 10.0, 10.0) 24800 11402 2.18

DTLZ2 7.48 (2.0, 2.0, 2.0) 4000 5998 0.00

DTLZ3 3374.98 (15.0, 15.0, 15.0) 30800 14732 2.09

DTLZ4 7.48 (2.0, 2.0, 2.0) 4400 4422 0.00

DTLZ5 6.1 (2.0, 2.0, 2.0) 4400 3282 1.34

DTLZ6 55.6 (4.0, 4.0, 4.0) 40000 16802 2.38

DTLZ7 134.20 (10.0, 10.0, 10.0) 6400 3891 1.64

Fig. 4. The convergence test of Algorithm 3 vs. NSGA-II on problem ZDT1

due to the space constraint. To see the figures corresponding to the results of the
rest of the problems, readers are referred to the accompanying supplementary
material [8] with this paper.

In the next experiment, we have carried out similar tests with the scalable
problem sets – DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6 and DTLZ7
[16]. For all cases, we have considered 3-objectives. Similarly, we compensate the
measure by the extra SE spent to find bounds. All the results are collated from
31 independent runs. In DTLZ6, our approach shows a noticeable improvement,
and also for DTLZ1 (Fig. 6). Figures for the results on other problems can be



Injection of Extreme Points in EMO Algorithms 603

Fig. 5. These plots illustrates the comparative analysis of the convergence rates for
different 2-objective problems, the curves are actually consisted of box-plots. Here
Algorithm 3 denotes our algorithm and nsga2r is NSGA-II.

Fig. 6. These plots illustrates the comparative analysis of the convergence rates for
different 3-objective problems, the curves are actually consisted of box-plots. Here
Algorithm 3 denotes our algorithm and nsga2r is NSGA-II.

seen in [8]. There are some problems (i.e. DTLZ2, DTLZ4 and DTLZ5) for which
the Algorithm 3 does not demonstrate any improvement. The reason behind this
is that NSGA-II does not face much difficulty in reaching the true PF, as a result
the outcome stays the same even if we introduce extreme points to guide the
search. For example, DTLZ6 is harder than DTLZ56, as a result, our approach
shows even better speed-up in solving harder problems.

6 Conclusions and Future Works

The main contribution of this paper is the utilization of the concept of bracket-
ing in the MOP. Although in many classical optimization algorithms, they are
assumed to be known. In EMO algorithms, the bounding solutions can play a
very important step in the actual optimization run. Moreover, our approach does

6 DTLZ5 and DTLZ6 are basically the same problem except an exponential growth
added to the g function, and DTLZ7 has a disconnected PF.
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not assume that the initial approximations are true CHIM+ bounds. To over-
come this limitation, it uses an intuitive and a simple way to improve the bounds
during the evolutionary run – which is more intuitive than many approaches [4,7]
that use an archive or a population to improve/utilize the bounds.

Most importantly, our study has demonstrated that, even after spending a
portion of the total allocated solution evaluations to find the CHIM+ bounds,
they are so useful that the original EMO can achieve an extremely fast conver-
gence. Our technique is also easy to implement and understand. We have also
seen that the efficacy of our algorithm becomes more salient with the increasing
level of problem difficulty. Even though we have carried out an extensive study
of our model on a variety of benchmark problems, we did not conduct our study
on many-objective cases yet. We hope to investigate along this line in the future.
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